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Theory and Methods Section 

A Bayesian Look at Inverse Linear Regression 

BRUCE HOADLEY* 

The model considered in this paper is simple linear regression (Eyi = P I  +p~xi, 
i = 1, . . ,n), and the problem is to make statistical inferel~cesabout an unknown 
value of x corresponding to one or more additional observed values of y. The 
maximum likelihood estimator $2 of x and the classical (l-or) 100% confidence set S 
for x have some undesirable properties. For example, 2 has infinite mean square 
error and P IS = ( - m, $ m ) 1 >O.The purpose of this paper is to demonst>l.atethat  
insight and understanding, as well as a useful class of solutions, can be obtained by 
looking a t  the problem from a Bayesian point of view. 

A result which follows from a general Bayes solution is that  the inverse estimator 
141 is Bayes with respect to a particular informative prior. 

1. INTRODUCTION AND DISCUSSION 

The inverse linear regression problem can be stated formally as follows: ob-
servations take the form 

where the EI~ 'Sand ezj's are mutually independent and identically distributed 
as N(0, u2). I t  is assumed that XI, . , x, are known constants, and that PI, 
Pz, u2, and x are unknown. The problem is to make statistical inferences about 
x based on yn, . . . , yln, y21, . . . , yzm.Without loss of generality, the xi's are 
chosen so that 

This problem is sometimes called the linear calibration problem, where, for 
example, the xi's might be known weights, and the yli's the corresponding read-
ings off the scale being calibrated. If someone wanted to weigh an object with 
unknown weight x, he might take m different readings y21, . . . , yzmfrom the 
scale, and then use the yli's, yzj's, and the xi's to estimate x. The problem is 
also called the discrimination problem [5, p. 3381, or the reverse of the prediction 
problem, and has applications to problems of biological assay. For example, 
XI, . - - , x, might be the known concentrations of a vitamin in n batches of 
chicken feed and y , ~ ,  . . , yln might be the corresponding observed weight 
gains of n young chicks. One way to estimate the vitamin concentration, x, 
in a new batch of feed would be to observe weight gains y21, . , yzmof m 
additional chicks, and then use the model in (1.1). 

* Bruce Hoadley is a member of the Statietios Department, Bell Telephone Laboratories, Holmdel, N. J. His 
previous publications have appeared in the Annals 01Mathematical Statistics, Biometrika, and the Journal of the 
American Statistical Ansociation. The author wishes to  thank Brian Joiner and David Hogben, National Bureau of 
Standards, for atimulatina discussions. He is also indebted to  Dan Relles and Andrew Kalotay. Bell Telephone 
Laboratories, who helped with some of the technioal, as well as philosophical, points in the article. 
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The discussion in the statistical literature on how to make inferences about 
x can be characterized by disagreement and confusion. The purpose of this 
paper is to view some of this discussion in a Bayesian light and then show that  
a Bayesian approach to the problem provides valuable insight as well as a us- 
able class of solutions. 

Before proceeding, some notation must be introduced and some elementary 
facts stated. Vectors and matrices shall be denoted by lower and upper case 
boldface letters, respectively. So, y is a vector and X i s  a matrix. The maximum 
likelihood and/or least squares estimators of P1 and ps based on yl are 

The classical unbiased estimators of u2 based on yl alone, yz alone, and both 
yl and yz are 

.2 = [ C  (us  - a ) ~ ]/vz 
i 


respectively, where 

The solution to the estimation problem most widely recommended in the 
literature1 is the maximum likelihood estimator (MLE). It can be shown [5, 
p. 3391 that the MLE is 

One cannot judge this "classical" solution by the familiar "classical" crite- 
rion of mean-square error (l!tSE) because 

E[(2 - xI21 PI, Pz, u2, X] = + m. (1.7) 

In  a Monte Carlo experiment, with m =1, Krutchlioff [4] showed that this has 
practical significance; because, for I ~ z / u l<lo ,  the empirical efficiency .(mea- 
sured by the ratio of average squared errors) of the inverse estimator (defined 
below) relative to a truncated version of 2 (truncation was used to prevent 8 2  

&om getting too close to zero) was noticeably larger than 1for a wide variety 
of conditions. For example, when Pz/a=5, the empirical efficiency was near 

1 For references, see 141. 
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1.25 in most cases considered. The inverse estimator is 

where 

are the least squares estimators of the slope and intercept when the xi's are 
formally regressed on the y~i's. 

Although it is true that the MSE of 3tr is finite, Williams [8] remarked that 
this does not prove very much. He went on to show that if u2 and the sign of 
P2 are known, then the unique unbiased estimator of x has infinite variance. 
I11 fact, he stated that, " . . . since the classical, the unbiased, or indeed any 
estimator that could be derived in a theoretically justifiable manner all have 
infinite variances, the fact that I<rutchkoff's estimator has finite variance 
seems to be of little account." 

Notwithstanding this argument, I feel that 2 is unsatisfactory from a point 
of view which is independent of MSE considerations. Let 

F = nBz2/v; (1.10) 

this is the F-statistic often used for testing the hypothesis that /?2=O. Intui-
tively, if F is much larger than F,,I,, (the upper a point of the F-distribution 
with 1and v degrees of freedom, which is the distribution of F when P2 =0) then 
2 is fairly precise, but if the opposite is true, then 2 is very imprecise (this can 
be seen clearly by plotting some data). I n  other words, the data contain infor- 
mation about the precision of 2 ;  SO, i t  seems reasonable to have some way of 
giving 2 less weight when i t  is known to be unreliable. This is precisely what a 
Bayes estimator does. 

The most interesting by-product of the Bayes solutions proposed in this 
paper is a characterization of the inverse estimator 21. For m = 1,it is shown in 
Sectioil 3 that if x has a t prior density with n-3 (the same n as in (1.1)) de- 
grees of freedom, mean 0, and scale parameter [(n+l)/(n-3)]1'2, then, a 
posteriori, x has a t density with n-2 degrees of freedom and mean 21. SO the 
inverse estimator is Bayes with respect to squared error loss and a particular 
informative prior distribution for x. Therefore, from a Bayesian point of view, 
21 is justifiable when the above peculiar prior distribution approximately 
quantifies the available prior knowledge of x. I t  appears that Williams [8, p. 
191,l. 331 was wrong when he stated implicitly that the inverse estimator can- 
not be derived in a theoretically justifiable manner. The above characteriza- 
tion provides 4 with some support since in practice i t  may be highly probable 
that x is within the range of XI, . . . ,x,. However, I would recommend a more. 
careful selection of a prior distribution on x. 

The classical (1-a) 100% confidence set S for x [5, p. 3391 also possesses 
inherent difficulties. If m= 1, the confidence set is derived from the fact that 
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has a t distribution with n-2 degrees of freedom. From (1.11) it follows that 

(x:x IxL) U (2:x 2 xu) if [n 1::12]F,.,;I.,-z5 F < F.;I,.-z
S = .  

(1.12)
n + l  


( -m,  + a )  if.<[ ]pa;l,7L-2,

n + l +  

where F is defined in (1.10) and XL and XU are equal to 

with XL < x u  (see Figure 1 for a graphical display of S).So Williams' [8,p. 1921 
suggestion to use a confidence interval estimator instead of a point estimator 
would not be very helpful if 

The set S was also obtained by Fieller [3] using a fiducial argument, and 
he said that one should intuitively expect S to have infinite length whenever 
F<F,,1,,-2, because then b 2  is not significantly different from zero. This 
statement may tempt one to conclude that in such a case the data provide no 
information about x. A Bayesian would agree that the data provide no infor- 
mation about x if his prior and posterior distributions of x are the same. For 
the Bayesian model of Section 2, they are different whenever F>O; i.e., with 
probability 1, the data will provide information about x. In  Figure 4, the pos- 
terior for Simulation 1is an example of a posterior in the case of a diffuse prior 
and F<F,,1,n-2.Of course, the closer F is to 0, the more diffuse the posterior 
would become. 

In any case, 1 -a does not measure anyone's "confidence" that S contains 
x, particularly when S= (- a,, +a ). Of course this paradox is explained by 
the fact that 1 -a is associated with a property of the random set S ,  not with 
any particular realization of S. The user is left with the following relevant 
questions unanswered : 

1. What measure of confidence can be associated with the particular realization of S 
a t  hand? 

2. 	 Using the data at  hand, how does one construct an interval of finite length which 
contains x with (1-a) 100% "confidencen? 

A posterior distribution on x would provide an answer to both questions. In  
Figure 1 the classical confidence set is compared with the shortest posterior 
interval (SPI) obtained from the aforementioned posterior distribution whose 
mean is 21. 

Fieller [3, p. 1761 also showed that the inverse linear regression problem car1 
be reduced to considering the ratio of two means. Let q =&x, E =P2, ?i=u s-81, 
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Figure 7 .  COMPARISON OF 95y0 CONFIDENCE SET 
AND 95% SPI FOR n =9, El = 7 

and {=&. Then z =v/t, and (4, {) has a multivariate normal distribution with 
mean and covariance equal to 
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respectively; and (9,$) is statistically independent of v. Now one can use either 
Fieller's [3] or Creasy's [ l ]  method to obtain an interval estimator for x. 

However, from a Bayesian point of view, there are serious flaws in the pre- 
ceding ideas. First of all, the minimal sufficient statistic for (PI, P2, u2, x) is 
( b ~ ,f i2 ,  v, g2); SO one cannot be sure, a priori, that the posterior distribution of 
x will depend only on ( i j ,  $,v) (although this turns out to be the case in my 
formulation). I n  other words, one is not guaranteed, a priori, that the reduc- 
tion to ( l j ,  e, v) entails no loss of information about x. Secondly, Creasy com- 
puted a fiducial distribution for x by first computing conditional fiducial dis- 
tributions for q and E given u2; then treating q and 4 as independent to obtain 
a fiducial distribution of x given u2; and then integrating out u2 wrt its fiducial 
distribution. Savage [7, p. 241 pointed out that his theory of precise measure- 
ment (i.e., the Bayesian approach) provides approximately the same solution 
if q and 4 are independent normal means. However, if one assumes that, a 
priori, x and p2 are independent (which is reasonable, since p2 is a property of 
the instrument and x is a property of the object being measured), then, a 
posteriori, q =P2x and 4' =P2 will not be independent, and Creasy's solution is 
not applicable. 

Before developing a Bayes solution to the inverse linear regression problem, 
it should be mentioned that Dunsmore [2] derived a Bayes solution to a sim- 
ilar problem where nz= 1, and (x, yz), (xi, yli) i=1, . . , n are assumed to be 
independent observations from a bivariate normal distribution. He obtained 
21 as the conditional mean of x given y2, (xi, yli) i=1, . . ,n. This is not too 
surprising since, for the bivariate model, the estimation of x is really a predic- 
tion problem (as opposed to a reverse prediction problem) and classical prin- 
ciples can be used to derive 21as a predictor for x. 

2. A BAYES SOLUTION 
First, more notation is needed. If 8 is an unltnown parameter, then p(B) and 

p(Ol data) denote the prior and posterior density of 8, respectively. The likeli- 
hood function is denoted by l(61 data); and the conditional density of y given 
w, where y is an observable variable, is denoted by f(yI w). All parameters arid 
data variables are sometimes considered as constants and sometimes as random 
variables. It is not necessary to complicate the notation by distinguishing 
between the two. 

Examples of symbolic distributional statements are: 

{ P I  Y ]  tu(m1 21). 

The first means that vvh is distributed as x2with v degrees of freedom; and the 
second means that conditional on y, 6 has the same distribution as m+t,z/;, 
where t, has a t distribution with v degrees of freedom. 

A useful lemma [6, p. 2351 is 

Lemma 1. If ( 1 u2)  - ~ ( m ,  u2/n) and l/u2-(l/v) [Xv2/v], then y-t,(m, v/n). 

The first step in a Bayesian approach is to select some prior distribution. 
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Here i t  is assumed that (8, In a) has a uniform distribution; i.e., 

This is the improper "noninformative" prior which is often selected in regres- 
sion problems, and it can be viewed as an approximate representation of 
vagueness. With no additional technical difficulty the analysis could be carried 
out under the assumption of the natural conjugate family of priors for (@,u2) 
(Raiffa and Schlaifer, [6]); however, assumption (2.2) simplifies the formulas 
considerably, and does not detract from the main theme of the paper. The 
prior density of x is arbitrary and will be denoted by p(x). 

The posterior density of x is given by the following theorem: 

Theorem 1. Suppose that, a priori, x is independent of (@,u2), and the prior 
distribution of (9, u2) is specified by (2.2). Then the posterior density of x is given, 
by 

P(XI Y1, Y*) p(x)L(x), (2.3) 

where 

R = F/ (F  + v).  

Proof. There are at  least two ways to derive this result. The one suggested by 
a referee is to use Bayes theorem to get the joint posterior distribution of 
(x, u2, g) ,  and then integrate out @ and u2-in that order. I find this approach 
algebraically tedious and prefer n more deductive approach which seems to 
provide more insight. 

The following list of facts is an outline of the derivation: 

1 

(Dl ( 1/u2 1 2, Yl ,  ~ 2 )  - [x"~/v].


V 


We now prove these facts (if m= 1, the following proofs are made valid by 
setting v 2 =0). 

(A) The liltelihood function associated with (1.1) is 
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Hence 0.1, vz, y2) is a sufficient statistic and p(xl y,, y2)=p(xl yl, 02, y2). 
By Bayes theorem 

P(XI Yl, v21 7 2 )  a p(x 1 ~llf(V2,yz 1 x, y1) 

= P(. I rllf(y2 1 2, Yl, vz>f(vz1 2, y1). 

Fact (A) follows from this because f(v2l x, yl) does not depend on x, and 
p(xIy1) =~ ( 5 ) .  

(B) First note that conditional on (a2, yl), 	(x, v2) and @ are independent. 
From this and the Bayes solution to the ordinary regression problem 
[6, p. 3431, we can conclude that 

where Iis the 2 x 2  identity matrix. Now clearly 

( ~ 21 u4,z,YI, V Z ,  91 N(0, a2/m). 	 (2.6) 

Fact (B) follows from (2.5) and (2.6). 
, (C) This follo~vs from (B) and the fact that 92=j31+j32~+82. 

(D) Let h = l/a2.By Bayes theorem 

~ ( hI 2, YI, 212) p(h I a, yllf(v2 I h, x, yl) 

= ~ ( h  (( ~ i ) f ( v zh). 


But from [6, p. 3431 


and i t  is well known that as a function of h 

Fact (D) follows from (2.7), (2.8), and (2.9). 
(E) This follows from (C), (D), and Lemma 1. 

Now from (A) and (E) we have 

Some algebraic manipulation of (2.10) yields Theorem 1. 
Some remarks about Theorem 1 are now in order. The function L(x) is a 

kind of lilielihood function representing the information about x obtained from 
all sources except the prior distribution of x. I t  is clear that for fixed m and n, 
L(x) becomes sharper (more dispersed) as F gets larger (smaller). Another 
propertyof L(x) is that  as IxI-+w, ~ ( x ) = 0 ( 1 / / x I ) ; s o  
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Now one can choose sequences, { B I ~ )and k =  1, 2, . . { B Z ~ )  , of positive 
numbers so that if, a priori, x is uniformly distributed on [-Blk, Bzk], then 
limk,, E ( X \yl, yz) is equal to anything one wants. The point is that an im- 
proper uniform prior on x leads to a nonsensical Bayes estimator. In view of 
(2.11), the same can be said of the Bayes interval estimator. So it seems that a 
proper prior for x is a prerequisite to sensible use of the Bayes solution in 
Theorem 1. 

More insight into L(x) is obtained by writing 

Now it can be shown that Lr(x) = O  iff x is the solution to a cubic equation, which 
may or may not have all real roots. If they are all real, L(x) has two local max- 
ima. Careful examination of both (2.12) and (2.4) reveals that the maximum of 
L(x) lies between R2 and 2 (note that I Rli.-21-+O as F-a,). The sign of the 
other local maximum, if it exists, will be opposite that  of 2. The case where 
L(x) has two local maxima is not equivalent to the case where the confidence 
set in (1.12) is the union of two disjoint half-lines. For example, if m =  1,n=9 ,  
and 2 =1 (see Figure I), then L(x) is unimodal for all values of F. If m, n, and 
F are held fixed, then L(x) can be made bimodal by taking 2 sufficiently large. 

3. CHARACTERIZATION OF THE INVERSE ESTIMATOR 

In the case m =1the inverse estimator can be characterized by the following 
theorem : 

Theorem2. If,a priori 

then, a posteriori, 

Proof. By hypothesis, 

I 


p(x>' a  
[ l  + x2/(n + 1)](n-2)12 

Now from Theorem 1we have 
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The result follows from (3.6) and (3.4). 
Theorem 2 is important in view of the fact that in the 1lcer.acur.e [4], 21 has 

been given serious consideration as an alternative to 2.This theorem provides a 
better understanding of the inverse estimator as well as Bayes estimators in 
general. From (3.6) we have 

So 2rcan be viewed as a shift of 2 toward 0 (the prior mean of x). The relative 
magnitude of the shift ( 1  2-2, 1 / I  21 = (n-2)/ [F+ (n-2)]) is a decreasing 
function of F. So the more informative the data (i.e., the larger F), the less 
the adjustment of 2 toward the prior mean. Theorem 2 also says that from a 
Bayesian point of view, 21cannot be justified unless the prior distribution given 
by (3.1) is an acceptable quantification of the prior uncertainty about x. This 
certainly restricts the applicability of 21.If (3.1) can be justified in a particular 
application, then the 100(1 -a)% SPI  can be computed easily from (3.2), and 
is given by 

A comparison of (3.8) and (1.12) is shown in Figure 1 for the case a=.05, 
n = 9 ,  2= 1. Note that for very large F, the two intervals are about the same; 
but when F-tO, the SPI  approaches the prior 95 percent interval estimate. 

4. SIMULATED NUMERICAL EXAMPLES 

In this section, we analyze three sets of data which were chosen from 16 
computer simulations of model (1.1) with n =9, m =1, PI =0, PZ=1, u= .698, 
x =  1, and the xi's equally spaced. The preceding value of u was chosen so that 
the probability of 1.5' (with a= .05) having infinite length (i.e., P [ F<F.05:1.7 1) 
is .l. The two prior densities of x which are used in the analyses have the form 
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Figure 2. DATA AND REGRESSION LINES FOR SIMULATION 1 


Figure 3.  DATA AND REGRESSION llNES FOR SlMUlATlON 3 
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Figure 4. PRIOR I AND CORRESPONDING POSTERIORS 

FOR SlMUlATlONS 7 AND 3 


Figure 5. PRIOR 2 AND CORRESPONDING POSTERIORS 

FOR SIMULATIONS I AND 3 
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This analysis clearly shows that inferences about x can be made even when 
F<F.06:1,1. A glance a t  Figure 2 suggests that  these data do contain informa- 
tion about x, and a glance a t  Figure 4 confirms this feeling. 

5. CONCLUSIONS 

In  this article, a class of solutions to the inverse linear regression problem 
has been presented. To select a solution, one must quantify his prior informa- 
tion about x. With some extra effort the model could be expanded to also allow 
injection of prior information about (p, u2).  

However, the main point in the paper is that the Bayesian approach has led 
to valuable insight and understanding. Conditioning on the data actually 
observed is just the right thing to do in this problem; because if the data are 
weak (F small), appropriate adjustments to the NILE and classical confidence 
set are required, but if the data are strong (F large), not much adjustment is 
necessary. The prior distribution on x is acting as an anchor. I t  keeps the 
inference under control whenever the data get out of control. 

In particular, i t  was shown that the inverse estimator, 21, is Bayes with 
respect to a particular informative prior on x and I 2- 21I -+0 as F-+ a,. 
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