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A Bayesian Look at Inverse Linear Regression

BRUCE HOADLEY*

The model considered in this paper is simple linear regression (Ey;=pg:-+B8sz:,
t=1, - - -, n), and the problem is to make statistical inferences about an unknown
value of z corresponding to one or more additional observed values of y. The
maximum likelihood estimator £ of  and the classical (1—«) 1009, confidence set S
for z have some undesirable properties. For example, # has infinite mean square
errorand P{S=(—~ », + «)} >0. The purpose of this paper is to demonstrate that
insight and understanding, as well as a useful class of solutions, can be obtained by
looking at the problem from a Bayesian point of view.

A result which follows from a general Bayes solution is that the inverse estimator
[4] is Bayes with respect to a particular informative prior.

1. INTRODUCTION AND DISCUSSION

The inverse linear regression problem can be stated formally as follows: ob- »
servations take the form

Yyu=p1+PBsti+ e t=1--:,n

. (1.1)
y2i=ﬁl+ﬂ2x+€2i J=1)""m7

where the e’s and e;’s are mutually independent and identically distributed
as N(0, ¢2). It is assumed that xy, - - -, z, are known constants, and that 8,
Bz, 0%, and z are unknown. The problem is to make statistical inferences about
x based on Y11, * * *, Yiny Yo1, * * ¢ 5 Yame Without loss of generality, the z/'s are
chosen so that

; z; =0, [ Z x.-2:| /n = 1. (1.2)

This problem is sometimes called the linear calibration problem, where, for
example, the z;’s might be known weights, and the y1,’s the corresponding read-
ings off the scale being calibrated. If someone wanted to weigh an object with
unknown weight x, he might take m different readings ya, * * +, ¥am from the
scale, and then use the y1/s, ¥2;’s, and the z;’s to estimate x. The problem is
also called the discrimination problem [5, p. 338], or the reverse of the prediction
problem, and has applications to problems of biological assay. For example,
2y, * + +, T, might be the known concentrations of a vitamin in n batches of
chicken feed and yu, « + *, y1» might be the corresponding observed weight
gains of n young chicks. One way to estimate the vitamin concentration, z,
in a new bateh of feed would be to observe weight gains a1, * - -, Yam of m
additional chicks, and then use the model in (1.1).
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The discussion in the statistical literature on how to make inferences about
z can be characterized by disagreement and confusion. The purpose of this
paper is to view some of this discussion in a Bayesian light and then show that
a Bayesian approach to the problem provides valuable insight as well as a us-
able class of solutions.

Before proceeding, some notation must be introduced and some elementary
facts stated. Vectors and matrices shall be denoted by lower and upper case
boldface letters, respectively. So, y is a vector and X is a matrix. The maximum
likelihood and/or least squares estimators of 8; and 3; based on y; are

A

™

1=
32 = [ Z yux;] /n

The classical unbiased estimators of ¢2 based on y; alone, y. alone, and both
y1 and y, are

(1.3)

vy = [ }; (Y1 — b1 — 52-’13.')2] /v1

Vo = [ Z (Yo5 — }_’2)2] /s (1.4)
v = [Vﬂ)l + Vzvz]/ll,

respectively, where
vi=n—2
ve=m — 1 (1.5)
v =v{+ v

The solution to the estimation problem most widely recommended in the
literature! is the maximum likelihood estimator (MLE). It can be shown [5,
p. 339] that the MLE is

z = [3-’2 - 61]/8\2
= [5’2 - 5’1]/&2-

One cannot judge this “classical” solution by the familiar “classical” crite-
rion of mean-square error (MSE) because

E[(2 — 2)?| By, B2y 0% 2] = + oo. (1.7)

In a Monte Carlo experiment, with m =1, Krutchkoff [4] showed that this has
practical significance; because, for lﬂz/a] <10, the empirical efficiency .(mea-
sured by the ratio of average squared errors) of the inverse estimator (defined
below) relative to a truncated version of # (truncation was used to prevent Bs
jrom getting too close to zero) was noticeably larger than 1 for a wide variety
of conditions. For example, when B;/c =5, the empirical efficiency was near

(1.6)

1 For references, see [4].
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1.25 in most cases considered. The inverse estimator is

=19+ 85’2
a 1.8
= [52 — 315, (18)
where
o= [ Z y”x’] / [ 2 =y 1)2] (1.9)

7 ==
are the least squares estimators of the slope and intercept when the z;'s are
formally regressed on the y1/’s.

Although it is true that the MSE of & is finite, Williams [8] remarked that
this does not prove very much. He went on to show that if ¢2 and the sign of
B: are known, then the unique unbiased estimator of x has infinite variance.
In fact, he stated that, “ - - - since the classical, the unbiased, or indeed any
estimator that could be derived in a theoretically justifiable manner all have
infinite variances, the fact that Krutchkoff’s estimator has finite variance
seems to be of little account.”

Notwithstanding this argument, I feel that £ is unsatisfactory from a point
of view which is independent of MSE considerations. Let

F = nBs2/v; (1.10)

this is the F-statistic often used for testing the hypothesis that 8;=0. Intui-
tively, if F is much larger than F,.,, (the upper « point of the F-distribution
with 1 and » degrees of freedom, which is the distribution of F when 8;=0) then
# is fairly precise, but if the opposite is true, then # is very imprecise (this can
be seen clearly by plotting some data). In other words, the data contain infor-
mation about the precision of #; so, it seems reasonable to have some way of
giving # less weight when it is known to be unreliable. This is precisely what a
Bayes estimator does.

The most interesting by-product of the Bayes solutions proposed in this
paper is a characterization of the inverse estimator #;. For m =1, it is shown in
Section 3 that if x has a ¢ prior density with »—3 (the same n as in (1.1)) de-
grees of freedom, mean 0, and scale parameter [(n+1)/(n—3)]'/2, then, a
posteriori, x has a t density with n—2 degrees of freedom and mean ;. So the
inverse estimator is Bayes with respect to squared error loss and a particular
informative prior distribution for z. Therefore, from a Bayesian point of view,
#1 is justifiable when the above peculiar prior distribution approximately
quantifies the available prior knowledge of z. It appears that Williams [8, p.
191, 1. 33] was wrong when he stated implicitly that the inverse estimator can-
not be derived in a theoretically justifiable manner. The above characteriza-
tion provides #r with some support since in practice it may be highly probable
that z is within the range of 2, - - -, z.. However, I would recommend a more.
careful selection of a prior distribution on z.

The classical (1—a) 1009, confidence set S for z [5, p. 339] also possesses
inherent difficulties. If m =1, the confidence set is derived from the fact that
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n23y(% — )
[v(n + 1 4+ 22)]1/2

has a t distribution with n—2 degrees of freedom. From (1.11) it follows that

(1.11)

{x: xLSxSxU} fF> Fain-2
n+1
{x: z < xL} v {.v z > xU} if \:———] Fojrm—2 X F < Foj1n
= n+ 1+
1 (1.12)
(-——00,—'—00) ifF<[_“‘—_—:lFa;l.n—2,
n—+ 14 %2
where F is defined in (1.10) and z;, and zy are equal to
I Fo1a_ D — Fotme Fg2|j1/2
- +{ el £ 1) tns) + P2 , o (1.13)

(F - Fa;l,n—Z) a (F - Fa;l,n——Z)

with 2z <2y (see Figure 1 for a graphical display of S). So Williams’ [8, p. 192]
suggestion to use a confidence interval estimator instead of a point estimator
would not be very helpful if

F < [(n + 1)/("’ + 1 + xz)]Fa;l,n—Z-

The set S was also obtained by Fieller [3] using a fiducial argument, and
he said that one should intuitively expect S to have infinite length whenever
F<F,ns because then B, is not significantly different from zero. This
statement may tempt one to conclude that in such a case the data provide no
information about xz. A Bayesian would agree that the data provide no infor-
‘mation about x if his prior and posterior distributions of x are the same. For
the Bayesian model of Section 2, they are different whenever F>0; i.e., with
probability 1, the data will provide information about z. In Figure 4, the pos-
terior for Simulation 1 is an example of a posterior in the case of a diffuse prior
and F < F,1,n—2. Of course, the closer F is to 0, the more diffuse the posterior
would become.

In any case, 1 —a does not measure anyone’s “confidence” that S contains
z, particularly when S=(— 0, + «). Of course this paradox is explained by
the fact that 1 —« is associated with a property of the random set S, not with
any particular realization of S. The user is left with the following relevant
questions unanswered:

1. What measure of confidence can be associated with the particular realization of S
at hand?

2. Using the data at hand, how does one construct an interval of finite length which
contains x with (1—a) 1009, “confidence”?

A posterior distribution on x would provide an answer to both questions. In
Figure 1 the classical confidence set is compared with the shortest posterior
interval (SPI) obtained from the aforementioned posterior distribution whose
mean is £r.

Fieller [3, p. 176] also showed that the inverse linear regression problem can
be reduced to considering the ratio of two means. Let =8, £=8,, =% —B
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COMPARISON OF 95% CONFIDENCE SET
AND 95% SPI FOR n=9, x=1

Xy for F > 5.59

XL for F > 5.59

XU for 5.08 < F < 5.59

¥

*I\ X_ for 5.08 < F < 5.59

and £=f,. Then z=n/t, and (4, £) has a multivariate normal distribution with
mean and covariance equal to

(7]) E)
. [(l/m +1/n) 0 ] (1.14)
7 0 1/n
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respectively; and (4, £) is statistically independent of ». Now one can use either
Fieller’s [3] or Creasy’s [1] method to obtain an interval estimator for z.

However, from a Bayesian point of view, there are serious flaws in the pre-
ceding ideas. First of all, the minimal sufficient statistic for (8;, 8s, o2, z) is
(By, Bs, v, ) ; s0 one cannot be sure, a priors, that the posterior distribution of
z will depend only on (4, £ v) (although this turns out to be the case in my
formulation). In other words, one is not guaranteed, a prior:, that the reduc-
tion to (4, £, v) entails no loss of information about . Secondly, Creasy com-
puted a fiducial distribution for z by first computing conditional fiducial dis-
tributions for 4 and ¢ given o?; then treating  and £ as independent to obtain
a fiducial distribution of = given o?; and then integrating out o2 wrt its fiducial
distribution. Savage [7, p. 24] pointed out that his theory of precise measure-
ment (i.e., the Bayesian approach) provides approximately the same solution
if 7 and ¢ are independent normal means. However, if one assumes that, a
priori, x and B, are independent (which is reasonable, since 8, is a property of
the instrument and z is a property of the object being measured), then, a
posteriori, n= 0.« and £=p, will not be independent, and Creasy’s solution is
not applicable.

Before developing a Bayes solution to the inverse linear regression problem,
it should be mentioned that Dunsmore [2] derived a Bayes solution to a sim-
ilar problem where m=1, and (z, ¥.), (;, %1:) ©=1, - - -, n are assumed to be
independent observations from a bivariate normal distribution. He obtained
%1 as the conditional mean of x given y., (x;, ¥1:) =1, + + -, n. This is not too
surprising since, for the bivariate model, the estimation of z is really a predic-
tion problem (as opposed to a reverse prediction problem) and classical prin-
ciples can be used to derive 4 as a predictor for x.

2. A BAYES SOLUTION

First, more notation is needed. If § is an unknown parameter, then p(f) and
p(()] data) denote the prior and posterior density of 8, respectively. The likeli-
hood function is denoted by l(0| data); and the conditional density of y given
w, where y is an observable variable, is denoted by f(y| w). All parameters and
data variables are sometimes considered as constants and sometimes as random
variables. It is not necessary to complicate the notation by distinguishing
between the two.

Examples of symbolic distributional statements are:

h N—}_ [X'2/V]
v

{8y} ~t(m,v).
The first means that yvh is distributed as x* with » degrees of freedom; and the
second means that conditional on y, 8 has the same distribution as m-t,/,
where ¢, has a t distribution with » degrees of freedom.
A useful lemma [6, p. 235] is
Lemma 1. If {yl a2} ~N(m, ¢2/n) and 1/c2~(1/v) [x.2/v], then y~t,(m, v/n).

The first step in a Bayesian approach is to select some prior distribution.

(2.1)
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Here it is assumed that (8, In ¢) has a uniform distribution; i.e.,
P8, %) x 1/0% (2.2)

This is the improper “noninformative” prior which is often selected in regres-
sion problems, and it can be viewed as an approximate representation of
vagueness. With no additional technical difficulty the analysis could be carried
out under the assumption of the natural conjugate family of priors for (8, ¢2)
(Raiffa and Schlaifer, [6]); however, assumption (2.2) simplifies the formulas
considerably, and does not detract from the main theme of the paper. The
prior density of z is arbitrary and will be denoted by p(x).
The posterior density of z is given by the following theorem:

Theorem 1. Suppose that, a priori, x is independent of (8, o2), and the prior
distribution of (B, 2) is specified by (2.2). Then the posterior density of x is given
by

p@ |y, ¥2) * p@)L(x), (2.3)
where
[1 4+ n/m + x2]2
L(z) = -
[1 +n/m+ R&2+ (F/v + 1)(x — R&)2]o+Di2 (2.4)
R =F/(F 4+ ).

Proof. There are at least two ways to derive this result. The one suggested by
a referee is to use Bayes theorem to get the joint posterior distribution of
(z, o2, 8), and then integrate out 3 and ¢2-in that order. I find this approach
algebraically tedious and prefer a more deductive approach which seems to
provide more insight.

The following list of facts is an outline of the derivation:

(A) P& |y, y2) = p@I(F:| 7, y1, v2).
B1 By 1/n O 0 "‘

(B) 2o 2,y et~ N|[B|, 02 0 1/n 0

Lég 0 0 0 l/m_|
(C) {92] 0%, 2, y1, v} ~N(B1 + Boz, o2[1/n + x2/n + 1/m]).

, L

(D) {1/02| z, y1, 02} ~ [x.2/v].
(E) {9:] %, ¥1, v2} ~ (B + Baz, v[1/n + 2*/n + 1/m]).

We now prove these facts (if m= 1, the following proofs are made valid by
setting v,=0).

(A) The likelihood function associated with (1.1) is
5(6, 0'2’ z I yi, Y2) « J(G; o? I YI){(gy ‘72: T l .V2)

1
« £(8, a? l y1) ;;exp{ - [Vzvz + m(?z - By - ﬂ2$)2]/20'2}
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Hence (¥, v5, 72) is a sufficient statistic and p(xl Y, y2) =p(x[ Y1, Vs, F2).
By Bayes theorem

Z’(-’vl}’l, Vg, J2) < p(x | y)f (v, 5’2| z, y1)
= p@| (32| 2, 31, v)f (2] 2, ¥).
Fact (A) follows from this because f (v2| z, y1) does not depend on z, and
p(@|y1) =p(@).
(B) First note that conditional on (¢?, y1), (z, v2) and 3 are independent.

From this and the Bayes solution to the ordinary regression problem
[6, p. 343], we can conclude that

{81 0% 2, 31, 02} ~ (8] 02, 31}
~N@, o*1/n),
where I is the 2 X2 identity matrix. Now clearly
{&:| o2, z, y1, v2, B} ~ N (0, 02/m). (2.6)

Fact (B) follows from (2.5) and (2.6).
(C) This follows from (B) and the fact that 3, =B+ B:x+&.
(D) Let h=1/¢% By Bayes theorem

(2.5)

p(hlxyyly 02) &« p(hlx,yl)f(vzlh, x,YI)

2.7
= p(h|y)f@:| b). @n

But from [6, p. 343]
p(h] y1) & hritrtg; @8)
and it is well known that as a function of &
fws| B) o hreize-vamahiz, (2.9)

Fact (D) follows from (2.7), (2.8), and (2.9).
(E) This follows from (C), (D), and Lemma 1.

Now from (A) and (E) we have
p(x I Y, .Vz)
p(x)

(1/n + z%/n + 1/m)]1/2 {1 +

(2.10)

o4

19 — B — Bx]? } [Ty
w[l/n + 2%/n + 1/m]

Some algebraic manipulation of (2.10) yields Theorem 1.

Some remarks about Theorem 1 are now in order. The function L(x) is a
kind of likelihood function representing the information about x obtained from
all sources except the prior distribution of z. It is clear that for fixed m and n,
L(x) becomes sharper (more dispersed) as F gets larger (smaller). Another
property of L(x) is that as I xl —0, L(x) =0(1/| xl );so

+o0
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Now one can choose sequences, {Blk} and {sz} k=1, 2, - - -, of positive
numbers so that if, a priori, z is uniformly distributed on [—Bu, Bax], then
1My 20 E(xl y1, ¥2) is equal to anything one wants. The point is that an im-
proper uniform prior on z leads to a nonsensical Bayes estimator. In view of
(2.11), the same can be said of the Bayes interval estimator. So it seems that a
proper prior for x is a prerequisite to sensible use of the Bayes solution in
Theorem 1.
More insight into L(z) is obtained by writing

L(z) = ! (2.12)

1 AR F(x — £)* (1) /2
[1 + n/m + a?] ’ [ +v(1 +h/m+x2)]

Now it can be shown that L’(z) =0 iff = is the solution to a cubic equation, which
may or may not have all real roots. If they are all real, L(z) has two local max-
ima. Careful examination of both (2.12) and (2.4) reveals that the maximum of
L(z) lies between R% and £ (note that [Ra?—ael —0 as F—»). The sign of the
other local maximum, if it exists, will be opposite that of £. The case where
L(z) has two local maxima is not equivalent to the case where the confidence
set in (1.12) is the union of two disjoint half-lines. For example, if m=1, n=9,
and £=1 (see Figure 1), then L(z) is unimodal for all values of F. If m, n, and
F are held fixed, then L(z) can be made bimodal by taking # sufficiently large.

3. CHARACTERIZATION OF THE INVERSE ESTIMATOR

In the case m =1 the inverse estimator can be characterized by the following
theorem:

Theorem 2. If, a prior:
| ~ SO\ \TY v =/ N ~r7 (3-1)
then, a posteriori,
n+ 14 &*/R >
x|y, Yof ~taea | gy, | ———— ). 3.2
(el il 2("‘[(F+n—2)] (32
Proof. By hypothesis,
o .
p(z) '«
1+ 2%/(n + 1)]=-212
[ /1( )] , 5.3)
oL
[1 4+ n 4 22]n2
Now from Theorem 1 we have
' 1
p|yy, o) = (3.4)

. [l +n+Ra2+ (F/(n — 2) + 1)(x — R&)?]o-vr2
But
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R=1/[1+ (n—2)/F]
nlézz

Z (Y1 — 31 — Baxd)? + nfbs?

(3.5)
- Z (yu— )2’
50
L nfa? Y2 — N
Be = [ Z (Y1 — F1)? J[ Bs ] 3.6)

= :91.

The result follows from (3.6) and (3.4).

Theorem 2 is important in view of the fact that in the uierawure [4], #1 has
been given serious consideration as an alternative to £. This theorem provides a
better understanding of the inverse estimator as well as Bayes estimators in
general. From (3.6) we have

£ = [ﬂ%:—:—zs]x 3.7

So # can be viewed as a shift of £ toward 0 (the prior mean of z). The relative
magnitude of the shift (|£—r|/|#| =(n—2)/[F+(n—2)]) is a decreasing
function of F. So the more informative the data (i.e., the larger F), the less
the adjustment of £ toward the prior mean. Theorem 2 also says that from a
Bayesian point of view, #; cannot be justified unless the prior distribution given
by (3.1) is an acceptable quantification of the prior uncertainty about z. This
certainly restricts the applicability of #;. If (3.1) can be justified in a particular
application, then the 100(1 —«a)%, SPI can be computed easily from (3.2), and

is given by
1+ n+ #2/R 2
2t SFy1pme| ——— .
o [T

A comparison of (3:8) and (1.12) is shown in Figure 1 for the case a=.05,
n=9, £=1. Note that for very large F, the two intervals are about the same;
but when F—0, the SPI approaches the prior 95 percent interval estimate.

4. SIMULATED NUMERICAL EXAMPLES

In this section, we analyze three sets of data which were chosen from 16
computer simulations of model (1.1) with n=9, m=1, 8,=0, 8;=1, ¢=.698,
z=1, and the z's equally spaced. The preceding value of ¢ was chosen so that
the probability of S (with a=.05) having infinite length (i.e., P {F<F 051.4})
is .1. The two prior densities of # which are used in the analyses have the form
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1
—54<2<"74
1/ — ¢\ 2@+ /2
p(x) = [l +E< ; ):\ 4.1)

0 otherwise,

with Prior 1 and Prior 2 specified by (¢=0, s=10, d=4) and (¢=0, s=1.29,
d=6), respectively. Note that Prior 2 is essentially the same as the prior in
Theorem 2. Truncated priors were used to simplify computations.

Table 1 lists the pertinent statistics for the three simulations. Note that
Simulations 1, 2, and 3 correspond to small, medium, and large (relative to
F 051,7="5.59) values of F. Table 2 lists various numerical descriptions of the
posterior distributions generated by the three simulations and the two-priors.
For comparison, the 25th percentile, median, and 75th percentile of the two
priors are (—2.18, .79, 3.84) and (—.91, 0, .92) respectively.

The data, the two regression lines, and ¥, £, #; for Simulations 1 and 3 are
plotted in Figures 2 and 3 respectively. Figure 4(5) shows Prior 1(2) along with
the corresponding posterior densities from Simulations 1 and 3.

Table 1. STATISTICS FOR THREE SIMULATIONS

Statzstic Simulation 1 Stmulation 2 Stmulation 3
B 179 .349 ~.219
2 .70 1.127 .893
v .856 .813 .193
I .821 .549 1.073
1/6 1.817 1.673 1.060
£1 .349 .366 .903
F 5.161 14.069 37.290
Y2 .755 .968 .740
(zL, 2u) (— o, + ) (—1.718, 3.542) (—.147,2.671)

Table 2. NUMERICAL DESCRIPTIONS OF POSTERIORS

Simulation 1 Simulation 2 Simulation 3

Numerical description
Prior 1 Prior 2 Prior 1 Prior 2 Prior 1 Prior 2

Mean .97 .35 .67 .37 1.16 .90

Median .86 .35 .59 .37 1.10 .90

Mode .70 .35 .54 .37 1.05 .90
Standard deviation 2.22 1.08 1.43 .82 .80 .59
Skewness coefficient .15 .03 .47 .01 .92 .00
25th percentile —.29 —.41 -.07 —-.13 .71 .55
75th percentile 2.16 1.00 1.31 .86 1.53 1.26
959% shortest posterior (—3.61, (—1.82, (—2.26, (—1.27, (—.30, (—.28,
interval (SPI) 6.12) 2.52) 3.90) 2.01) 2.75) 2.08)
95% even tailed (—-3.75, (—1.82, (—2.14, (-1.27, (—.19, (—.28,
posterior interval 5.99) 2.52) 4.04) 2.01) 2.91) 2.08)

Posterior probability of
959, confidence set S 1.00 1.00 .932 .989 .947 .959
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Figure 2. DATA AND REGRESSION LINES FOR SIMULATION 1
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Figure 3. DATA AND REGRESSION LINES FOR SIMULATION 3
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Figure 4. PRIOR 1 AND CORRESPONDING POSTERIORS
FOR SIMULATIONS 1 AND 3
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Figure 5. PRIOR 2 AND CORRESPONDING POSTERIORS
FOR SIMULATIONS 1 AND 3
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This analysis clearly shows that inferences about = can be made even when
F<F o51,1. A glance at Figure 2 suggests that these data do eontain informa-
tion about z, and a glance at Figure 4 confirms this feeling.

5. CONCLUSIONS

In this article, a class of solutions to the inverse linear regression problem
has been presented. To select a solution, one must quantify his prior informa-
tion about z. With some extra effort the model could be expanded to also allow
injection of prior information about (8, o2).

However, the main point in the paper is that the Bayesian approach has led
to valuable insight and understanding. Conditioning on the data actually
observed is just the right thing to do in this problem; because if the data are
weak (F small), appropriate adjustments to the MLE and classical confidence
set are required, but if the data are strong (¥ large), not much adjustment is
necessary. The prior distribution on z is acting as an anchor. It keeps the
inference under control whenever the data get out of control.

In particular, it was shown that the inverse estimator, #:, is Bayes with
respect to a particular informative prior on z and | &—&| —0 as F— .
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